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ABSTRACT 
In this paper, we present a single-object long-term tracker that 
supports high appearance changes in the tracked target, 
occlusions, and is also capable of recovering a target lost during 
the tracking process. The initial motivation was real time 
automatic speaker tracking by a static camera in order to control a 
PTZ camera capturing a lecture. The algorithm consists of a novel 
combination of state-of-the-art techniques. Subjective evaluation, 
over existing and newly recorded sequences, shows that the 
tracker is able to overcome the problems and difficulties of long-
term tracking in a real lecture. Additionally, in order to further 
assess the performance of the proposed approach, a comparative 
evaluation over the VOT2013 dataset is presented. 

Categories and Subject Descriptors 
I.4.8 [Image Processing and Computer Vision]: Scene Analysis 
–tracking 

General Terms 
Algorithms, Performance, Design, Experimentation. 

Keywords 
Object tracking, feature points, template matching, lectures 
production, PTZ control. 

1. INTRODUCTION 
Lecture production is an important task in the field of online 
teaching, conference streaming, etc. High quality lecture capturing 
depends on human camera operators, thus resulting in expensive 
solutions. Automatic capturing dramatically reduces the cost of 
these online initiatives. 

The original motivation behind the work presented in this paper is 
to simulate the behavior of a human camera operator capturing a 
lecture for online transmission. The setup consists of a PTZ 
camera, which is the camera whose signal is transmitted; and a 
fixed wide-angle and high-resolution camera whose output is 
analyzed to track the speaker position and to consequently 
command the PTZ camera to follow her/him as if it were a human 
operator. As both cameras are closely anchored and the target 
object (see Fig. 1), the speaker, is considered to be quite far from 
them, a simple homography is obtained to relate their positions. 
This set up could be adapted to other scenarios (e.g., surveillance, 

tv reporters), where close-up monitoring of selected targets by a 
PTZ camera that can be controlled by mid-range tracking of a 
general view static camera is a solution.    

This paper focuses on the development of an object tracker 
designed for real-time long-term automatic speaker tracking with 
the fixed camera. Additionally, thanks to a simple frame 
stabilization module, the proposed tracker shows its capability to 
operate in more generic situations, like  scenarios where the fixed 
camera cannot be guaranteed to be fully stable (e.g., mounted on a 
pole), hence improving the results obtained by the state of the art 
trackers on such sequences. 

After this introduction, some references from the state of the art 
are described. Then, the video object tracking algorithm is 
presented and each one of its modules is explained. Afterwards, 
the selected evaluation framework is presented. The experiments 
and results are described after that. Main conclusions and future 
work conclude the paper. 

2. RELATED WORK 

2.1 Tracking for lecture capturing  
In the work presented by Rui et al. [1], the design of a complete 
system that automatically captures and broadcasts lectures is 
reported. They also describe how the system can be generalized to 
a variety of lecture room environments differing in room size and 
number of cameras. The goal is to share their experience building 
the system with the practitioners in the field to facilitate the 
construction of similar systems, and to identify unsolved problems 
requiring further research. 
Similar to the previous system is the work presented by Zhang et 
al. [2]. This system also considers two cameras (one for the 
lecturer and one for the audience). This work presents a complete 
automated end-to-end system that supports capturing, 
broadcasting, viewing, archiving and searching of presentations. 
They describe a system architecture that minimizes the pre- and 
post-production time, and a fully automated lecture capturing 
system. Zhang et al. [3] also present another automated lecture 
capturing system scheme based only on a single PTZ camera. This 
system has certain limitations: it is difficult to port the system to 
another lecture room; analog cameras do not only require a lot of 
wiring work, but also need multiple computers to digitize and 
process the captured videos. During the system setup stage, a 
detection region and a screen region should be manually specified. 
Chou et al. [4] propose an automatic lecture recording system 
based on a PTZ camera shooting in a lecture. In the system, the 
PTZ camera is controlled to make the recording video similar to 
one shot by a real cameraman. In this case, the camera should be 
mounted on the central back hall and at the eye level of the 
audience. This system includes lecturer detection and screen 
detection, which are applied to locate the position of the lecturer 
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and of the screen. For the lecturer tracking, the Mean Shift 
method is used with two features: color and edge orientation 
histogram. One main restriction of this method is that assumes 
that there is only one person standing in the front of the lecture 
room, the lecturer. 
ClassX [5] is an interactive online system developed at Stanford 
University by Pang et al. In this work they propose a new learning 
algorithm to automatically generate a professional virtual camera 
view by learning the behavior of a human camera operator, based 
on the consideration that a tracking-based camera view does not 
mimic a human operator naturally. In the project, a simple virtual 
camera is considered with two degrees of freedom: horizontal 
position and a bi-level zoom level (for simplicity). This system 
obtains an input video recorded from a static HD camera, as well 
as the locations of the writing boards. For lecturer tracking, 
conventional background subtraction and template matching 
techniques are used to detect, whilst the position and velocity of 
the lecturer are the features used for prediction. 
Another work on this topic is described by Yokoi et al. [6], where 
a method for generating a dynamic lecture video from the high 
resolution images recorded by a HDV camcorder is proposed. The 
lecture video is generated by cropping the recorded high 
resolution images. The method used for detecting the positions to 
crop from the high resolution images are calculated with frame 
temporal differencing. 
A general weakness of these systems is the absence of a real-time 
tracking algorithm able to operate in a long-term fashion, which is 
required to automate the event capturing process.  This paper 
focuses on this specific aspect, and the next section presents a 
brief state-of-the-art on this topic. 

 
 
 

2.2 Tracking using fixed cameras 
This section presents a brief review of recent schemes similar to 
those applied in the proposed algorithm; exhaustive reviews of 
state-of-the-art object tracking can be found in [7]. 
In the object tracking field, Varcheie et al. describe some 
solutions [8][9][10]to the tracking problem: a KLT based tracking 
algorithm [8], a tracking algorithm using motion detection with 
fuzzy classifiers [9], and an adaptive color based particle filter 
tracking algorithm [10]. In [11], Xie et al. propose a particle filter 
tracking algorithm applied to the omega shape instead of based on 
color, using the Viola-Jones method to set the initial object 
position. In this field of study, Chang et al. [12] propose a Mean-

Shift tracking algorithm on the HSV color space. In [13], Xie et 
al. expose another algorithm based on shape from the multi-part 
perspective, where the object is divided into pieces, using a HOG 
descriptor for each one  

3. PROPOSED OBJECT TRACKER 

3.1 Overview 
Initially the image stabilization module extracts the feature points 
between consecutive frames and estimates a homography between 
them to somehow compensate possible small camera motion (see 
section 3.3). 
After this, a two phases algorithm has been designed for the 
proposed single-target object tracker. The first phase uses the 
Kanade Lukas Tomasi approach (KLT)[14] to choose the object 
features (using color and motion coherence) in order to track 
relatively large object displacements. The second phase uses mean 
shift gradient descent [15] to take the bounding box to the exact 
position of the object model, using the object features provided by 
the KLT learning model. Figure 2 shows the block diagram of the 
algorithm. 

 
 

3.2 Initialization 
Only the position and size of the object in the first frame of the 
video is given to this block. This position can be obtained in 
different ways, depending on the target application: it can be 
selected manually or by using an automatic object detector (e.g., a 
people detector) able to get the initial position of an object. 
The object model is based on the RGB color and on the luminance 
gradient. The model consists of a one-dimensional histogram 
including the quantized values of the color components -16 bins 
per color in our experiments-, and an edge binary flag. The 
histogram is generated with all the pixels of this first frame 
located inside the object image patch. All pixels in this patch 
contribute with the same weight to the histogram, regardless of 
their position/location relative to the center of the bounding box. 
After that, using the CBWH method [16], the histogram is 

Figure 2. Algorithm modules 

 

. 

 
 

Figure 1. Cameras positioning. The cameras are placed 5 

metres over the floor level 

 

. 
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corrected reducing the effect caused by the background pixels in 
the initial bounding box. 

3.3 Video stabilization 
The first approach to the tracking algorithm was designed to be 
used in fixed camera scenarios. However, due to the possible 
vibration of fixed cameras, and also to extend the application 
domains moving cameras, a stabilization module was developed.   
Camera stabilization is applied to every input frame, via fitting a 
set of matching feature points to an eight parameter—an 
homography—camera motion model. When addressing the 
problem of spatial correspondence for subsequent video analysis, 
there are several options to consider, as total stabilization or 
partial stabilization. For the proposed algorithm, spatial 
correspondence with the previous frame has considered to be 
enough, thus allowing elimination of motion of the moving 
camera and discrimination with respect to other moving objects. 
 The homography between two consecutive frames is estimated 
(via the RANSAC method) using the Shi-Tomasi features 
obtained for tracking (see section 3.4) and the current frame and 
the tracked object position (previously obtained) are corrected 
accordingly.  

3.4 Feature points 
The features used in a video object tracker should try to address 
the characteristics:  

• Numerous: having the greatest number of features to 
discriminate the object 

• Descriptive enough: to be located accurately, without 
ambiguities. 

• As repeatable (between frames) as possible 
• As invariant (between frames) as possible 
• Low computational cost: to achieve real time 

applications 
Given these assumptions, the best reported options include: the 
Harris and Stephens corner detector [17], the Shi-Tomasi corner 
detector [14], the fast FAST corner detector [18] and the ORB 
points [19]. SIFT [20] and SURF [21] have been initially 

discarded as they have a high computational cost and are also 
worse detectors for the tracking objective due to its low 
repeatability. 
In the proposed algorithm, the objective is to quickly track as 
many features as possible. Considering the options, the Shi-
Tomasi corner detector is conceptually optimal as it is based on 
how the trackers work [14]. These features present high 
repeatability and low computational cost, allowing the algorithm 
to track many features and, in the case of a sequence (consecutive 
frames without major changes between them), in a more robust 
way. The selected features are also non-parametric, avoid the 
spurious corner points on smooth curves and are invariant to 
typical image transformations. 
These feature points are additionally used for image stabilization, 
in order to reduce the computational cost of this phase. 

3.5 KLT tracking 
The KLT feature tracker is originally based on the work done by 
Lucas-Kanade for calculating the optical flow [22], subsequently 
completed by Tomasi-Kanade [23], and finally presented and 
clarified by Shi-Tomasi [14]. This technique is based on 
characteristic points tracking, using the equations developed by 
Lucas-Kanade for calculating the optical flow, and also 
implements the iterative Newton-Raphson method for searching 
the object position. 

Starting with the extraction of the feature points obtained from the 
object patch for each frame by the method of Shi-Tomasi, this 
tracking method calculates the target displacement with respect to 
the next frame with the KLT minimizing error process (Newton-
Raphson) using all the detected feature points and its 
displacements. A weight is defined according to the distance 
between each point and the center of the bounding box, so that 
each feature point contributes in a different way to the total 
displacement of the target. 
This approach is only valid if the spatial displacement is small 
enough so that the gradient does not change its direction. In the 
case of a 25 fps video sequence, the changes presented between 
two consecutive frames are small enough, so this approximation is 
valid. For large displacements, this procedure should be applied in 
a pyramidal way [24][25]. 

3.6  Position refinement via template 

matching 
The output of the KLT tracker is an estimate of the target position 
in the current frame. Our experiments indicated that this position 
might be quite noisy or imprecise in many situations; hence, we 
chose to refine the target position via a template matching 
approach. In this direction, Mean Shift [15] is one of the most 
used techniques to find model matches in object tracking. Here we 
apply it to find the maximum in the location confidence map 
resulting from comparing the maintained object model—based on 
the RGB color and on the luminance gradient—to a searching area 
around the KLT position estimate. 

3.7 Recovery process 
In sequences from practical applications all trackers get lost at 
some point. Furthermore, the object tracked may momentarily 
disappear from the scene. As the aim of this work is to design a 
long-term tracker, a recovery method is necessary. 
If during of a certain number of frames—30 in our experiments—
the algorithm does not match any characteristic point of the 
tracked object and the similarity between histograms is low—0.6 
in our experiments—, the recovery process is activated. This 
process consists of: first, all feature points in the frame are 
obtained (from the association between two consecutive frames, 
as discussed above); then, a bounding box, with the size of the 
initial object model obtained from the first frame,  is centered in 
each feature point, and the model histogram is calculated; finally, 
if the similarity between this histogram and that of the initial 
object model is higher than a threshold—0.1 in our experiments—
the object is considered to be recovered and the tracking process 
continues with the object centered in that point; in case the 
histogram similarity is not above the threshold for any obtained 
point the recovery process continues in the following frame. 
The computational cost of the recovery process is greater than the 
computational cost of the tracker when the target is located, but as 
the recovery process is executed just for exceptional cases, the 
processing time of the complete algorithm is not increased 
significantly. 

4. EVALUATION FRAMEWORK 

4.1 Datasets 

4.1.1 VPULab-Lectures dataset 
Some sequences have been designed and recorded in order to 
check the long-term performance of the designed algorithm. 
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These sequences are public and available online1. Some sample 
frames of these video sequences are presented in Figure 3. 
There are two types of sequences: real-lecture videos and 
challenges videos. The real-lecture category consists of two long 
duration videos (30 minutes each) that have been recorded in a 
real lecture; they present some difficulties as target disappearing 
and reappearing on the scene, target appearance changes and 
scene illumination changes.  

 
 
 
 
In addition to the two long videos, 10 short different challenges 
videos designed to include difficult situations that a tracking 
algorithm might face during a lecture have been recorded with the 
aim of testing the algorithm in these situations. C1 presents the 
target taking off a sweater, which represents a high appearance 
change. In C2 and C3, the tracked target leaves the scene and then 
comes back to it. In C2, the exit and entry are produced in the 
same place, different than C3 in which they are produced at 
different locations. A significant occlusion is shown in C4, where 

                                                                 
1http://www-vpu.eps.uam.es/publications/ 

TeacherTrackingForAutomaticLecturesProduction/ 

the target moves and hides behind the blackboard coming out on 
the opposite end of it. In C5, the target squats (for example, to 
turn on a computer) behind a table. The challenge presented in C6 
is similar than the one presented in C4, but in this case the target 
comes in on the same place where he came out. Both C7 and C8 
present people and target crossing situations with people wearing 
similar (dark) clothes. C9 shows a situation where the target sits 
down and waits while two people with similar appearance go on 
stage sequentially. Finally C10 shows a target spinning. 

4.1.2 VOT2013 Dataset 
This is a typical short-sequences dataset, aimed to compare the 
algorithm performance with that of other state-of-the-art trackers, 
usually optimized for short-term situations. The content set used 
to generate it was provided by the VOT2013 challenge2 trying to 
independently address the different problems that a tracker can 
face. The main criteria for dataset selection were that the dataset 
should represent various realistic scenes and conditions, including 
occlusions, illumination changes, scale changes, etc. Figure 2 
(obtained from the VOT2013 challenge website) shows some 
frames of the different dataset videos (16 sequences summing up 
over 5000 frames). The VOT2013 dataset also provides the 
ground truth files. The associated ground-truth consists of only 
one target in each sequence that has been manually annotated by 
various authors of the dataset placing a bounding box over the 
object in each frame. 
The evaluation protocol of VOT2013 was not used as it recovers 
manually the target (using ground truth) whenever it is lost, and 
we believe that that is not the natural functioning of these systems, 
especially for evaluating short sequences such as those presented 
in the dataset. 
 

 
 
 

4.2 Evaluation metric 
The metrics correlation study in [26] demonstrates the high 
redundancy that exists among several state-of-the-art metrics 
(correlation above 0.9). Therefore, only the Sequence Frame 
Detection Accuracy (SFDA) metric [27] has been used in our 
evaluation. SFDA was chosen for two main reasons: its 
correlation with respect to other metrics is one of the highest, and 
it also considers and penalizes both false positives and false 
negatives. 

                                                                 
2 http://www.votchallenge.net/vot2013/  

Figure 3. Example frames of the lecture recorded 

sequences. The six top examples correspond to the real 

lecture videos and the six bottom examples correspond to 

the challenge videos 

 

. 

 
 

Figure 4. Example frames of the VOT2013 dataset. 

 

. 
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SFDA calculates in each frame the spatial overlap between the 
estimated target location and the ground-truth annotation. It 
contains information regarding the missed detections, false 
positives and spatial overlap. SFDA ranges from 0 to 1; the higher 
the value, the better. 
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    denotes the i-th ground-truth object in frame t. 

  
   

 denotes the i-th ground-truth object in frame t. 

  
   

 denotes de i-th detected object in frame t.  

  
   

 and    
   

 denote the number of ground truth objects and 

the number of detected objects in frame t, respectively.  
         is the number of frames in the sequence. 

       
   

 is the number of mapped ground truth and detected 

object pairs in frame t.  

4.3 EXPERIMENTAL VALIDATION  

4.4 Long-term qualitative validation  
The sequences in the VPULab Lectures dataset (both real-lecture 
videos and challenges videos) have been used for the algorithm 
development and configuration. In the absence of ground-truth 
data for these sequences results have been visually generated by 
superimposing the obtained target bounding box to each frame. 
The results are available on the website mentioned in subsection 
4.1.1. There are five object recovery situations (in sequences L1, 
C2, C3, C4 and C6) and in all of them the algorithm has operated 
correctly. If the object returns to the scene by the same place at 
which it left the scene (L1, C2, C6) the recovery is immediate. In 
the cases where it returns in a different location (C3, C4), the 
recovery takes longer, especially in the cases where changes in the 
target appearance occur, resulting in (at most) a few seconds. 

4.5 Short-term quantitative comparative 

results 
For this section the used metric is SFDA (see section 4.2) and the 
content set is the VOT2013 Dataset (see section 4.1.2).  
The comparison is done against the following trackers: Template 
Matching (TM) [28], Mean-Shift (MS) [15], Particle Filter-based 
Colour tracking (PFC) [29], Lucas-Kanade tracking (LK) [30], 

Incremental learning for robust Visual Tracking (IVT) [31], 
Tracking Learning Detection tracking (TLD) [32], Corrected 
Background Weighted Histogram tracker (CBWH) [16] and Scale 
and Orientation Adaptive Mean-Shift Tracking (SOAMST) [33]. 
The first four tracking algorithms have been selected because they 
are classical and general tracking algorithms. The last four have 
been chosen because they are modern trackers with contrasted and 
remarkable results. 
Figure 5 shows the SFDA score of the eight previously presented 
state-of-the-art trackers, and of the tracker proposed in this paper. 
Table 1 presents the numerical average scores of all the trackers to 
facilitate the comparison. The values presented in the table are 
those shown in the last set of bars in figure 3. 

Table 1. Average SFDA scores 

TM MS PFC LK IVT 
0,27 0,33 0,41 0,18 0,25 

 

TLD CBWH SOAMST Proposed 

0,29 0,43 0,37 0,46 

 
The results of individual trackers present high variations 
depending on the evaluated sequence. The mean score for the 
proposed algorithm presents the best figure, slightly above the 
best of the state of the art tracker (CBWH).  

Regarding the execution time for each sequence, table 2 shows the 
frames per second (fps) obtained after the execution over each of 
the 16 videos in the VOT dataset. The processing time is variable 
and depends on the frame size and on the elapsed time when an 
object is lost and recovered. The characteristics of the computer 
on which the times have been obtained are: Intel(R) Core(TM) 2 
Duo @2,93GHz, 4GB RAM, Windows 7, 32 Bits. 

Table 2. Execution times (fps) 

bicycle bolt car cup david diving 
22,6 10,6 22,0 21,6 18,8 33,0 

 

face gym. hand ice. jump juice 
14,8 34,5 24,4 15,6 25,3 9,9 

 

singer sun. torus woman average 

7,3 24,6 24,0 21,3 20,6 

 

5. CONCLUSIONS 
This paper presents an algorithm for long-term real-time tracking 
of single objects. According to the ideas presented in the 
introduction, using appropriate calibration between the fixed 
camera and a PTZ camera, this algorithm would command the 
PTZ camera to focus on a target during a long period (e.g. during 
a lecture, in order to allow for a proper lecture video production 
using the most adequate zoom if necessary).  

Figure 5. SFDA results 

 

. 
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The paper is focused on the description and evaluation of a novel 
tracking approach which uses a relatively simple but well founded 
combination of existing methods in the state-of-the-art (i.e., 
stabilization, feature point tracking, and template matching 
refinement) capable of tracking an arbitrary object for a long 
period of time and able to recover it once it has been lost during 
the tracking.  
The experiments qualitatively show that the algorithm operates as 
expected in long-term sequences with challenging situations; and 
quantitatively demonstrate that its performance in the challenging 
scenarios proposed by the scientific community (VOT) is higher 
than state-of-the-art trackers with which it has been compared.  
It is important to remark that while having obtained the best 
average score, there are many evident improvements applicable to 
the algorithm that have not yet been included, e.g.: model update, 
in order to cope with target changes in scale and orientation, 
inclusion of additional information (e.g., motion) in the object 
model; consideration of other objects in the scene to help solving 
occlusions and to avoid confusion with similar objects.  
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